Blog
Filter by tags:AILLMData EngineeringPythonThinking Toolsdeep learningmachine learningneural networkspytorchAI AgentsAPI IntegrationBackendCRMComputer VisionCreativityDeep LearningEmbeddingsEvaluationJIRAMachine LearningProductivitySalesforceSecurityStorageWeb DevelopmentWritingtrainingAI ApplicationsAI EngineeringAI GatewayAPIAPI ManagementASGIAgent ArchitectureAgent SkillsAgentic SystemsAgentsAnalyticsAnthropicAuthenticationAuthorizationAutomationBackend EngineeringBest PracticesCDCCNNChatbotClaudeCloud StorageCognitionDOCXData IngestionData ModelingData PipelinesData SystemsDebuggingDocument ParsingFastAPIFastHTMLFile ProcessingFile UploadFile UploadsFrameworkFundamentalsGeminiGmail APIGoogle DriveHTMXIndustrial AutomationInfrastructureJudgingKnowledge DistillationLLM JudgeLinear RegressionManufacturingModel CompressionMulti-Step ReasoningNLPNestJSOpenTelemetryPDFPerformanceProduction SystemsPrompt EngineeringPruningPydanticPydantic AIQualityQuality ControlQuantizationRAGREST APISOQLSemantic SearchSpeechStatisticsSteel IndustryTask ManagementTechnical ArticlesText ProcessingTool-Based AIUXValidationVector Searchactivation layerloss functions
-
Building AI Task Suggestions: Teaching a Machine to Read My Emails
I built an AI system that reads my emails and meeting notes to suggest tasks automatically. Here's what I learned about Gmail APIs, LLMs, and why processing 50 emails at once seemed like a good idea.
18 Feb 2026by Harshith Rao
Subscribe via RSS or enter your email to get notified of new posts directly in your inbox