Blog
Filter by tags:AILLMData EngineeringPythonThinking Toolsdeep learningmachine learningneural networkspytorchAI AgentsAPI IntegrationBackendCRMComputer VisionCreativityDeep LearningEmbeddingsEvaluationJIRAMachine LearningProductivitySalesforceSecurityStorageWeb DevelopmentWritingtrainingAI ApplicationsAI EngineeringAI GatewayAPIAPI ManagementASGIAgent ArchitectureAgent SkillsAgentic SystemsAgentsAnalyticsAnthropicAuthenticationAuthorizationAutomationBackend EngineeringBest PracticesCDCCNNChatbotClaudeCloud StorageCognitionDOCXData IngestionData ModelingData PipelinesData SystemsDebuggingDocument ParsingFastAPIFastHTMLFile ProcessingFile UploadFile UploadsFrameworkFundamentalsGeminiHTMXIndustrial AutomationInfrastructureJudgingKnowledge DistillationLLM JudgeLinear RegressionManufacturingModel CompressionMulti-Step ReasoningNLPNestJSOpenTelemetryPDFPerformanceProduction SystemsPrompt EngineeringPruningPydanticPydantic AIQualityQuality ControlQuantizationRAGREST APISOQLSemantic SearchSpeechStatisticsSteel IndustryTechnical ArticlesText ProcessingTool-Based AIUXValidationVector Searchactivation layerloss functions
-
Why Data Engineering Exists (and Why Data Ingestion Comes First)
Data engineering didn’t start with tools. It started with broken systems. This article explains why data engineering exists, how ingestion became its foundation, and why correctness begins at the moment data enters a system.
by Anitha
Subscribe via RSS or enter your email to get notified of new posts directly in your inbox